NAD+
This central coenzyme is directly involved in redox reactions and serves as a substrate for energy production enzyme activity, including sirtuins and poly(ADP-ribose) polymerases (PARPs), which regulate cellular metabolism, DNA repair, and epigenetic modifications.
NMN
This NAD+ precursor, which is directly converted to NAD+ through the NMNAT enzyme in the Salvage Pathway, has been shown to effectively increase intracellular NAD+ levels in numerous clinical trials, thereby enhancing mitochondrial function, energy production, and the activity of NAD+-dependent enzymes.
NR
This NAD+ precursor, which is converted to NAD+ through the Preiss-Handler Pathway, has also demonstrated the ability to increase NAD+ levels in cells. It supports cellular repair mechanisms, particularly those involved in DNA damage response and oxidative stress mitigation. By buttressing NAD+ levels, NR promotes the activation of sirtuins and PARPs, which protect genomic stability and regulating cellular metabolism.
Trigonelline
Trigonelline promotes cellular NAD+ production differently than NMN or NR. This methylated form of niacin offers several advantages: exceptional stability in the bloodstream, slow release into target tissues, non-flushing, protection against stomach digestion, and direct NAD+ increase in muscle tissues.